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ABSTRACT
Motivation: The prediction of localization sites of various
proteins is an important and challenging problem in the
field of molecular biology. TargetP, by Emanuelsson et al.
(2000) is a neural network based system which is currently
the best predictor in the literature for N-terminal sorting
signals. One drawback of neural networks, however, is that
it is generally difficult to understand and interpret how and
why they make such predictions. In this paper, we aim to
generate simple and interpretable rules as predictors, and
still achieve a practical prediction accuracy. We adopt an
approach which consists of an extensive search for simple
rules and various attributes which is partially guided by
human intuition.
Results: We have succeeded in finding rules whose
prediction accuracies come close to that of TargetP, while
still retaining a very simple and interpretable form. We also
discuss and interpret the discovered rules.
Availability: An (experimental) web service us-
ing rules obtained by our method is provided at
http://hypothesiscreator.net/iPSORT/.
Contact: bannai@ims.u-tokyo.ac.jp

INTRODUCTION
Most proteins are first synthesized in the cytosol, and
carried to specified locations, such as mitochondria or
chloroplasts. In most cases, the information determining
the subcellular localization site is represented as a short
amino acid sequence segment called a protein sorting
signal (Nakai, 2000). If we could somehow detect the
amino acid sequence encoding this information, we would
be able to predict the localization sites.

Prediction of localization sites is useful in various
ways. Because cellular functions are often localized in
specific compartments, the prediction of localization sites
of unknown or unannoted proteins may be used to
gain some indication of its function. For example, the
information may be used to screen candidate genes for

drug discovery. Further, if the rules for prediction were
biologically interpretable, this knowledge could help in
designing artificial proteins with desired properties.

TargetP (Emanuelsson et al., 2000), a neural network
based predictor, is known to be the best predictor in
the literature for N-terminal sorting signals. However,
although neural networks are “readily available” and
“often successful in practice”, they are also infamous
for the difficulty involved in trying to understand and
interpret their meaning (Chou, 2001). PSORT (Nakai and
Kanehisa, 1992; Nakai and Horton, 1999) and MitoProt
(Claros and Vincens, 1996), unlike TargetP, are systems
which incorporate existing knowledge about sorting
signals, but they use various real numbers as “weights”
in their prediction rules which also may not be trivially
interpretable. Also, they are somewhat obsolete and their
performance is unsatisfactory compared to TargetP.

The aim of this work is to derive simple and inter-
pretable rules which can be used to predict subcellular
localization sites, while still achieving a practical predic-
tion accuracy. Through ourdiscovery oriented approach
to the problem, we managed to find very simple and
interpretable rules with prediction accuracies which come
fairly close to TargetP.

We will first review the existing knowledge about the N-
terminal signals, and then describe the general idea of our
approach.

N-Terminal Sorting Signals
The signals we consider are signals known to be on
the N-terminal of the protein. Mitochondrial targeting
peptides (mTP), chloroplast transit peptides (cTP), and
signal peptides (SP) are the typical N-terminal sorting
signals.

Mitochondrial targeting peptides are known to be rich
in arginine (R), alanine (A), and serine (S), while nega-
tively charged amino acid residues (aspartic acid (D) and
glutamic acid (E)) are rare (von Heijne et al., 1989). Only
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weak consensus sequences have been found. Further, they
are believed to form an amphiphilicα-helix important for
import into the mitochondrion.

Chloroplast transit peptides are known to be rare in
acidic residues, and also believed to form an amphiphilic
α-helix (Bruce, 2000).

It has been established that a concrete consensus
sequence does not occur in signal peptides. Rather, a
three-region structure is conserved: a positively charged
n-region, a hydrophobic h-region, and a polar c-region
(von Heijne, 1990).

Overview of Our Approach
Several very important aspects in the process of scientific
knowledge discovery are: 1) the generation or discovery
of goodattributes, and ways of looking at the data, which
is then used to explain the data, 2) the incorporation of
and reflection on existing knowledge, and 3) the trial
and error interaction between the expert and the problem.
We have been developing a computer software library
focusing on these points to speed-up this process, and
have been applying it to various problems in the field
of bioinformatics (Maruyama et al., 1998, 1999; Bannai
et al., 2001).

The overall idea of this approach is to create massive
amounts of very simple attributes and their trivial combi-
nations, based on various known attributes. This way, if
such rules exist for the data, we can expect to overcome
the poor descriptive strength of simple rules, while at the
same time control the complexity and structure of the rule
to be generated.

Positive Examples

Negative Examples

1) MARSLARTTTVRQP...

2) MASIRTGSRVSFKC...

Amino Acid Sequences

3) ............

.....

234) MNSLSLSFTTALN...

235) NSFDVSRVSTKTS...

......

Pattern 

‘‘212221’’

Cut interval [1, 10]

Amino Acid Indexing (ZIMJ680104: Isoelectric point)

A   C   D   E   F   G   H   I   K   L

6.0 5.1 2.8 3.2 5.5 6.0 7.6 6.0 9.7 6.0

M   N   P   Q   R   S   T   V   W   Y

5.7 5.4 6.3 5.7     5.7 5.7 6.0 5.9 5.7

Indexing sum 

Positive Examples

1) 3212221222

2) 3222122213

3) ......

Negative Examples

234) 3222222222

235) 3223321222

......

Positive Examples

Negative Examples

  1) 68.1

  2) 68.4

  3) ....

234) 57.1
235) 59.6

.....

Positive Examples

1) TRUE

2) TRUE

3) ......

Negative Examples

234) FALSE

235) FALSE

......

Positive Examples

1) TRUE

2) TRUE

3) ......

Negative Examples

234) FALSE

235) FALSE

......

Alphabet Indexing + Pattern Rule

Amino Acid Index Rule

 

63.3 < ?

Threshold

Alphabet Indexing

A, C, F, G, I, L, S, T, W

R

D, E, H, K, M, N, P, Q, V, Y

1

2

3

10.8

Fig. 1. Concept diagram of amino acid index rule and alphabet
indexing + approximate pattern rule

Our search for the final hypothesis consists of two
main aspects: amino acid index, and alphabet indexing
+ approximate pattern. The details of each aspect will be

presented in the following sections, but we describe them
briefly here (See Figure 1).

Amino acid index A large amount of experimental and
theoretical research has been performed to characterize
different kinds of properties of individual amino acids
and to represent them in terms of a numerical index.
The AAindex database (Kawashima and Kanehisa, 2000)
is a compilation of 434 of such indices. As noted in
the previous subsection, protein sorting signals have
been characterized by the biochemical properties of the
amino acids composing them, and it seems reasonable
to assume that some kind of characteristic which is
important for protein sorting is already contained in the
AAindex database. Also, although an amino acid index
generally assigns a real number for each amino acid, it
should be easy for us to interpret the biological meaning
of the rule when we find a “good” amino acid index
contained in AAindex, which helps greatly in explaining
the data. Therefore, using AAindex as a knowledge base,
we generateamino acid index rules.

Alphabet indexing + approximate patternAgain from
previous studies, we know that there is no clear-cut con-
sensus sequence concerning each of the sorting signals.
However, since there does seem to be a common struc-
ture for the same signals, we wish to somehow capture this
knowledge. Our approach here is to consider motifs which
allow more ambiguity by usingalphabet indexing(Shimo-
zono, 1999) andapproximate patterns(Wu and Manber,
1992) over the indexed sequence, similar to the BONSAI
system (Shimozono et al., 1994), which was successful in
discovering meaningful knowledge from amino acid se-
quences.

An alphabet indexing is a classification of characters
of an alphabet into a smaller set of characters, and can
be viewed as a discrete, unordered version of an amino
acid index. For example, we may divide the amino acids
into the two classes of hydrophobic amino acids and
hydrophilic amino acids. Using this alphabet indexing,
we can view the amino acid sequence as a sequence of
‘0’s (hydrophobic) and ‘1’s (hydrophilic), and search for
patterns (e.g. ’001001100’) contained in the sequences.

The outline of this paper is as follows: In the next
section, we define the basic concepts used in our methods.
We then show the results we have obtained from applying
our methods to the data. Finally, we discuss how the rules
we discovered may be interpreted.

SYSTEM AND METHODS
Amino Acid Index Rule
An amino acid indexis a mapping from one amino acid
to a numerical value, representing various physiochemical
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and biochemical properties of amino acids.

Definition 1 (Amino acid index)
Let A denote the set of amino acids, andR the set of
real numbers. For a given amino acid indexI : A →
R and amino acid sequences = s1s2 . . . sn (for i :
1 . . . n, si ∈ A), let I(s) denote the homomorphism
[|I(s1); I(s2); . . . ; I(sn)|], where[|;|] denotes a sequence
of values. 2

The AAindex Database (Kawashima and Kanehisa,
2000) is a compilation of 434 types of amino acid indices,
which have appeared in various reports.

Definition 2 (Amino acid index rule)
An amino acid index rule(R1-rule) is defined by: an
amino acid indexI, a specified region of the amino
acid sequences denoted bys[u, v], a function fw ∈
{avg, maxavgw,minavgw}, and a thresholdτ , where:
avg(I(s)) is defined as the average of the values of
sequenceI(s), maxavgw(I(s)) is the average of a
substring of sizew in I(s), which gives the maximum
value (i.e.max{I(s′) | s = xs′y, |s′| = w}), and
minavgw(I(s)) is similarly the average of a substring
of size w in I(s) which gives the minimum value (i.e.
min{I(s′) | s = xs′y, |s′| = w}). s[u, v] = su . . . sv

(1 ≤ u ≤ v ≤ n) for s = s1s2 . . . sn.
A sequence is predicted “positive” by the R1-rule if

fw(I(s[m,n])) > τ and “negative” otherwise. 2

The parameters to be chosen are:I, u, v, f, w, τ , and the
task is to look for the best combination of the parameters
which can distinguish between sequences of different
signals.

With R1-rules, we expect to capture the overall proper-
ties of N-terminal sorting signals.

Alphabet Indexing + Approximate Pattern Rule
An alphabet indexing(Shimozono, 1999) is a classifica-
tion of characters of an alphabet. It is formally defined as
follows:

Definition 3 (Alphabet indexing)
An alphabet indexingψ is a mapping from one alphabet
Σ to another alphabetΓ, where |Γ| ≤ |Σ|. For x =
x1x2 . . . xl ∈ Σl, let ψ(x) denote the homomorphism
ψ(x1)ψ(x2) · · ·ψ(xl) ∈ Γl. We will call ψ(x), the
indexedsequence. 2

Definition 4 (Approximate pattern)
An approximate pattern(Wu and Manber, 1992) is a string
which can match another string, allowing up tok errors
(mismatch). The mismatch can consist of up to 3 types:
insertion (ins), deletion (del), and substitution (sub). We
will call the parametersk and the types of mismatches

allowed, the mismatch allowanceof the approximate
pattern. 2

Definition 5
An alphabet indexing + approximate pattern rule(R2-
rule) is defined by: an alphabet indexingψ, a specified
region of the amino acid sequences denoted bys[u, v],
a patternp, and mismatch allowanceM . A sequence is
predicted “positive” ifp matches somewhere inψ(s[u, v])
within mismatch allowanceM , and “negative” otherwise.
2

The parameters to be chosen are:ψ, u, v, p, M , and the
task again is to find the best combination of the parameters
which can distinguish between sequences of different
signals.

With R2-rules, we expect to find locally specific charac-
teristics concerning N-terminal sorting signals.

Data
The data used in our computational experiments was
obtained from the TargetP web-site†. These data consist
of two data sets: plant and non-plant sequences. The plant
data set of 940 sequences contained 368 mTP, 141 cTP,
269 SP, and 162 “Other” (consisting of 54 nuclear and
108 cytosolic) sequences. The non-plant data set of 2738
sequences contained 371 mTP, 715 SP and 1652 “Other”
(consisting of 1214 nuclear and 438 cytosolic) sequences.

We basically follow the work on TargetP, considering
different predictors for plant and non-plant proteins. Also,
as in the composition of TargetP, we will first consider
binary predictors which just predict whether or not a
given sequence contains a specific signal. The knowledge
obtained from these binary rules is combined into a
decision list, to form a final rule. For each binary predictor,
we will call the sequences concerning the signal in
questionpositive examples, and the sequences concerning
the other signals,negative examples.

Search Strategies
We extensively search for various parameters described
in the previous section. Since the size of the search
space for the combinations of different parameters is
huge, an exhaustive search is not feasible even with the
powerful computers which were available. We adopted
a mixture of heuristics and exhaustive search. Many
different combinations of the parameters as well as minute
variations in the heuristics were tried.

Combining the Rules To create a single rule predicting
the sorting signal for a given sequence, we combine
the binary rules generated for each sorting signal into
a decision list. The structure of the decision list is

†http://www.cbs.dtu.dk/services/TargetP/
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shown in Figure 2. The structure was determined greedily,
according to the “ease” of discrimination by the R1-rules,
which was stable for all training/test combinations.

From preliminary experiments, R1-rules seemed to be
sufficient for discriminating signal peptide sequences. As
for the other signals, neither type of rule seemed good
enough for identifying the signals. Therefore, we consider
combining both types of rules (R1-rules and R2-rules)
into a single rule. The first node of the decision list
discriminates signal peptides with a single R1-rule, while
the second and third nodes consist of both R1-rule and
R2-rule. The two rules (or perhaps their negations) are
combined with a logical ‘and’ where a sequence is judged
to have a certain signal if both rules say so.

SP?

mTP?

Other?

SP
yes

Other

yes

mTP
yes

cTP

no

P1P1

P2P2

P3P3

sequence

Omitted for non-plant

Fig. 2. The Structure of the
final rule for plant and non-
plant data sets. The last node
in parentheses concerning cTP
and mTP is omitted for the
non-plant data set (classifying
to mTP). The various param-
eters such as the amino acid
index, substring intervals, al-
phabet indexing, and patterns
which were chosen in the 5
training runs are summarized
in Table 1 and 2.

Evaluation of Prediction Accuracy
The whole search space conducted in our search was
enormous, and involved considerable amounts of human
intervention, influenced largely by human intuition. To
give a fair estimate for the prediction accuracy of our
methods, we choose a modest range of parameters to
search for in the cross validation, and show that the
knowledge discovered is fairly stable even in that quite
large range.

Training and Evaluation We follow the training and
evaluation methods used for TargetP. The data were
randomly divided into 5 equal sized datasets by dividing
each subset of sequences with specific localization sites
into 5 datasets. Rules were generated by using 4 of the
data sets as training data, and testing was conducted on
the remaining data set. This was repeated for the 5 possible
pairs of training and test set, and the overall performance
is the sum of the 5 results. (All rules are generated by using
the training data set only.)

Preliminary experiments showed that R1-rules were

fairly stable, but R2-rules seemed to somewhat over-fit the
training data. To overcome this problem, in the training
phase for R2-rules, the training set was again randomly
divided into 5 sets (4ttrain and 1ttestsets), and rules are
generated from ttrain and tested with ttest. The arithmetic
product of the scores from the ttrain and ttest sets was used
to select which alphabet indexing and substring interval to
use. The pattern was then trained using all sequences of
the original training set, using the alphabet indexing and
substring interval.

Rules are evaluated by the Matthews correlation coeffi-
cient (MCC) (Matthews, 1975), defined by:

tp× tn− fp× fn√
(tp + fn)(tp + fp)(tn + fp)(tn + fn)

wheretp = true positives,fp = false positives,tn =
true negatives, andfn = false negatives. Sensitivity,
the fraction of correctly predicted positive examples
( tp

tp+fn
), and specificity, the fraction of true positives in

the examples predicted as positive (tp
tp+fp

), were also
calculated for reference.

Details of the search is given below:

Amino acid index rule Since we know that the signals
are located somewhere in the N-terminal region, we
look (somewhat) exhaustively at the substring intervals
in this region: For amino acid indexI, all 434 entries
in the AAindex Database together with 20 more entries,
assigning a value of ‘1’ to one amino acid and ‘0’ to the
rest were considered. For these454 entries,72 substring
intervals[u, v] = [5n + 1, 5k] (wheren = 0 . . . 8 and
k = 1 . . . 8) were considered. For these454∗72 = 32688
combinations,fw = avg, maxavgw, minavgw were
considered wherew was taken to be6 to 12, resulting in
32688∗ (2∗7+1) = 490320 combinations. For all these
combinations, all possible thresholds are considered forτ :
let fw1 , ..., fwn

be allfw values ofn sequences in sorted
order. Then,τ = (fwi

+ fwi+1)/2, i = 1, . . . , n− 1. The
combination ofI, u, v, f, w, τ which gives the highest
MCC score is recorded.

Alphabet indexing + approximate pattern ruleThe sub-
string intervals[u, v] is taken to be[5n + 1, 5n + 5k]
(wheren = 0, 1, 2 and k = 2, 3, 4). For a given al-
phabet indexingψ, all patterns of length8 appearing in
the sequences are considered forp. The mismatch types
were limited to insertion and deletion only (no substitu-
tion). The maximum mismatch number was fixed at 2. We
started with the alphabet indexing classifying the amino
acids into three classes, according to their “charges”:

ψ0(x) =

{ 0 if x ∈ {D, E},
1 if x ∈ {K, R},
2 if x ∈ A− {D, E, K, R}
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and optimized the indexing by conducting a local search
on the alphabet indexing (Shimozono et al., 1994): i.e.
consider the alphabet indexings which are obtained
by changing the indexing for a single amino acid (40
candidates in this case), and adopt the indexing whose
product of the MCC scores for ttrain and ttest is the
highest for the best pattern. The process is repeated until
a local maximum is reached. A local search strategy
was used because an exhaustive search for all possible
alphabet indexings would result in320 combinations,
which was not feasible. Numerous tries starting from
other alphabet indexings, which were chosen randomly,
were also conducted, but high scoring indexings seemed
to be centered aroundψ0.

Combination of the rules After determining the pa-
rameters for the above rules, the rules and possibly their
negations are combined with a logical ‘and’, but a portion
of the parameters are trained again. Namely, the substring
intervals,f , window sizes, amino acid index, and alphabet
indexing are fixed. We retrain the mismatch allowance,
pattern, and threshold. Their ranges are expanded in the
retraining: The maximum mismatch number of1 to 3 was
allowed, and all patterns of length5 to 10 appearing in the
data were considered. The top100 R1-rules are combined
with all possible R2-rules, and the combination which
gives the best MCC score is chosen to be used against the
test set.

IMPLEMENTATION
The software used in our analysis was developed using
the Hypothesis Creator Library‡ (Bannai et al., 2001).
Various shared memory multi-processor computers were
available for calculation: 2 SGI Origin 2000 with (128,
32) x 195MHZ R10000 processors, 1 Sun Ultra Enterprise
4500 and 2 Sun Ultra Enterprise 3500 with (14, 8, 8)
x 400MHz Sun Ultra II processors respectively. Each is
equipped with well over 2GB of memory, which was the
limit of the software.

RESULTS AND DISCUSSION
The parameters found for each training set is summarized
in Table 1 for the plant data set, and Table 2 for the
non-plant data set. The scores of the cross validation
is summarized in Table 3, together with the scores for
TargetP written in parentheses (The scores for TargetP was
taken directly from (Emanuelsson et al., 2000)).

We can see that the MCC scores for our predictor is
fairly close to those of TargetP, except for chloroplast
transit peptides (cTP). However, it should be noted
that our score for cTP (0.64) would rank second, after
TargetP (0.72), better than PSORT (0.51), MitoProt (0.44),

‡http://hypothesiscreator.net/

Hydropathy Index of [1,30] − Max Average of Window size 11
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Fig. 3. Histograms (light-SP, dark-mTP, cTP, Other) ofmaxavg11

values of hydropathy index (Kyte and Doolittle, 1982) for the
substring[1, 30] of the plant data set. The threshold was2.07727.
We can see that there is a clear difference in the distribution.

and ChloroP (0.50) (Emanuelsson et al., 1999), in the
comparison of (Emanuelsson et al., 2000). Our predictor
scores higher for plant signal peptides, and for the other
signals, our scores would again rank second, after TargetP
with respect to the other predictors.

Biological Evaluation of the Rules
Amino acid index rules

SP vs (mTP + cTP + Other): [Node P1, rule R1 in
Table 1] The amino acid index with the highest score
was the hydropathy index (Kyte and Doolittle, 1982), and
judging from the substring interval[1, 30], and function
maxavgw wherew is around11, we can say this rule
corresponds to characteristics known for signal peptides
(the hydrophobic h region) (von Heijne, 1990) (Figure
3). What is surprising is that such a simple rule could
discriminate signal peptides so well - better than TargetP
for plant proteins.

(mTP + cTP) vs Other: [Node P2, rule R1 in Table
1] The amino acid index was “negative charge”, which
assigns a value of 1 to aspartic acid (D) and glutamic acid
(E). This also corresponds to known characteristics: mTP
and cTP are rare in negatively charged amino acids (von
Heijne et al., 1989).

mTP vs cTP: [Node P3, rule R1 in Table 1] Various
amino acid indices were chosen, with substring regions
for a very short region at the N-terminal. However, the
amino acid index: Isoelectric point (Zimmerman et al.,
1968) can be considered as a more accurate measure of the
net amino acid charges. Atom based hydrophobic moment
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Table 1.The parameters chosen for each training set (thresholdτ is omitted) for the plant data set. The nodes Pn corresponds to nodes in Figure 2.

R1 R2
Node Trial Amino Acid Index[u, v] fw, dir Alphabet Indexing[u, v] Pattern Mismatch Combination

P1

1 Hydropathy index1 [1, 30] maxavg11, ↑ not used not used not used R1→SP
2 Hydropathy index[6, 30] maxavg11, ↑ not used not used not used R1→SP
3 Hydropathy index[1, 30] maxavg11, ↑ not used not used not used R1→SP
4 Hydropathy index[6, 30] maxavg11, ↑ not used not used not used R1→SP
5 Hydropathy index[6, 30] maxavg11, ↑ not used not used not used R1→SP

P2

1 Negative Charge[1, 25] avg, ↓ DE→ 0, AR→ 1, Other→ 2 [1, 20] 221200020 3 ins/del ¬R1∨ R2→Other†

2 Negative Charge[1, 25] avg, ↓ DE→ 0, CR→ 1, Other→ 2 [1, 20] 20002212 2 ins/del ¬R1∨ R2→Other
3 Negative Charge[1, 25] avg, ↓ DE→ 0, R→ 1, Other→ 2 [1, 15] 022120 1 ins/del ¬R1∨ R2→Other
4 Negative Charge[1, 30] maxavg8, ↓ DE→ 0, CR→ 1, Other→ 2 [1, 20] 2002222222 1 ins/del ¬R1∨ R2→Other
5 Negative Charge[1, 30] avg, ↓ DE→ 0, CRF→ 1, Other→ 2 [1, 20] 020222222 1 ins/del ¬R1∨ R2→Other

P3

1 Hyd. mom.2 [1, 10] maxavg6, ↑ E→ 0, KR→ 1, Other→ 2 [1, 10] 22112221 2 ins/del R1∧ R2→mTP
2 Isoelectric point3 [1, 10] avg, ↑ E→ 0, KRW→ 1, Other→ 2 [1, 10] 22110 2 ins/del R1∧ R2→mTP
3 Hyd. mom.[1, 10] maxavg9, ↑ E→ 0, ARW→ 1, Other→ 2 [1, 10] 22110 2 ins/del R1∧ R2→mTP
4 Net charge4 [1, 10] avg, ↑ E→ 0, KR→ 1, Other→ 2 [1, 10] 1212221 2 ins/del R1∧ R2→mTP
5 Isoelectric point[1, 15] maxavg12, ↑ E→ 0, DKRW→ 1, Other→ 2 [1, 10] 11221 2 ins/del R1∧ R2→mTP

†: The actual rule was R1∧ ¬ R2→ mTPor cTP

Table 2.The parameters chosen for each training set (thresholdτ is omitted) for the non-plant data set. The nodes Pn corresponds to nodes in Figure 2.

R1 R2
Node Trial Amino Acid Index[u, v] fw, dir Alphabet Indexing[u, v] Pattern Mismatch Combination

P1

1 Hydropathy index[1, 30] maxavg12, ↑ not used not used not used R1→SP
2 Hydropathy index[1, 30] maxavg12, ↑ not used not used not used R1→SP
3 Hydropathy index[1, 30] maxavg12, ↑ not used not used not used R1→SP
4 Hydropathy index[1, 30] maxavg12, ↑ not used not used not used R1→SP
5 Hydropathy index[1, 30] maxavg12, ↑ not used not used not used R1→SP

P2

1 Net Charge[1, 25] minavg12, ↑ DE→ 0, R→ 1, Other→ 2 [1, 25] 202020220 3 ins/del R1∧¬ R2→mTP
2 Negative Charge[1, 20] avg, ↓ DE→ 0, R→ 1, Other→ 2 [1, 25] 2211221222 2 ins/del R1∧ R2→mTP
3 Negative Charge[1, 20] maxavg12, ↓ DE→ 0, R→ 1, Other→ 2 [1, 30] 2211221222 2 ins/del R1∧ R2→mTP
4 Negative Charge[1, 20] maxavg12, ↓ DE→ 0, R→ 1, Other→ 2 [1, 25] 2212211222 2 ins/del R1∧ R2→mTP
5 Negative Charge[1, 20] maxavg12, ↓ DEY→ 0,R→ 1, Other→ 2 [1, 25] 22122212 1 ins/del R1∧ R2→mTP

1: Hydropathy index (Kyte and Doolittle, 1982),2: Atom based hydrophobic moment (Eisenberg and Mclachalan, 1986),
3,4: Net charge, Isoelectric point (Zimmerman et al., 1968).

fw ↑means that rule will answeryesif the value offw(I(s[u, v])) is above a certain valueτ , fw ↓ is the opposite.

(Eisenberg and Mclachalan, 1986) is also a similar amino
acid index, where the values for arginine (R) and lysine
(K) are higher than the other amino acids. Although values
for aspartic acid (D) and glutamic acid (E) are also higher
for the atom based hydrophobic moment, these amino
acids rarely appear in mTP or cTP, and do not effect the
average values.

Therefore, together with the interpretation from
(mTP+cTP) vs Other, we can see that both mTP and cTP
lack negatively charged amino acids, but mTP tend to be
more positively charged than cTP for the front end of the

signal.
Also seen in the alphabet indexing + approximate

pattern rule for mTP vs cTP, the region which was best for
distinguishing the two signals seemed to be located in the
short portion of the sequences, whereas the best regions
for distinguishing the other signals tended to be a longer.

The plain occurrence count of amino acids did not seem
to appear in any of the trials. This is perhaps because the
number of certain amino acids is too rough an estimate of
the overall biochemical properties of the signals.
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Table 3.The Prediction Accuracy of the Decision Lists (scores of TargetP (Emanuelsson et al., 2000) in parentheses). This represents the sum of the predictions
of the 5 hypotheses of Tables 1 and 2 over the test set.

Data Set
True
category

# of
seqs

Predicted category
Sensitivity MCC

cTP mTP SP Other

Plant

cTP 141 96 (120) 26 (14) 0 (2) 19 (5) 0.68 (0.85) 0.64 (0.72)
mTP 368 25 (41) 309 (300) 4 (9) 30 (18) 0.84 (0.82) 0.75 (0.77)
SP 269 6 (2) 9 (7) 244 (245) 10 (15) 0.91 (0.91) 0.92 (0.90)
Other 162 8 (10) 17 (13) 2 (2) 135 (137) 0.83 (0.85) 0.71 (0.77)

Specificity 0.71 (0.69) 0.86 (0.90) 0.98 (0.96) 0.70 (0.78)

Non-plant
mTP 371 – – 275 (330) 11 (9) 85 (32) 0.74 (0.82) 0.67 (0.73)
SP 715 – – 8 (13) 660 (683) 47 (19) 0.92 (0.91) 0.90 (0.92)
Other 1652 – – 119 (152) 44 (49) 1489 (1451) 0.90 (0.85) 0.78 (0.82)

Specificity – – 0.68 (0.67) 0.92 (0.92) 0.92 (0.97)

Alphabet indexing + approximate pattern rules

(mTP + cTP) vs Other: [Node P2, rule R2 in Table
1] The alphabet indexing was stable nearψ0. The best
patterns were found to match the ’Other’ sequences, rather
than patterns matching mTP and cTP signals. Although
patterns of the latter type would be of more interest, this
is natural since mTP and cTP are different signals and
the similarity in their structure may be subtle. Looking
at the combination of the rules, a signal is rejected for
mTP or cTP if the sequence contains (nearly) consecutive
’0’s, which is aspartic acid (D) or glutamic acid (E). The
occurrence of ’1’ in each pattern is limited, showing that
mTP or cTP signals should contain a number of arginine
(R). Lysine (K) is classified to ’2’ perhaps showing the
asymmetry of arginine and lysine (K) in mTP.

mTP vs cTP: [Node P2, rule R2 in Table 1] The best
patterns were found to match mTP sequences. Some
patterns may be too short to judge, but the patterns
”22112221’ and ’1212221’ seem to be capturing the
periodic occurrence of arginine (R) or lysine (K) (‘1’) in
mTP, which is the characteristic of an amphiphilicα-helix
(von Heijne et al., 1989).

With the same parameters, we also searched for the
best patterns which match cTP and do not match mTP.
The patterns found were ’022210’ for trials 1, 3, and 4,
’2222022222’ for trial 2, and ’220222110’ for trial 5, all
with a maximum of 1 insertion/deletion. It is interesting
that all the patterns contain a ’0’, which is glutamic acid
(E).

Non-plant
A similar interpretation can be done for rules con-

cerning the non-plant data set. The difference from the
plant set being that the alphabet indexing was more
stable aroundψ0. Also looking at the patterns discovered,
the first pattern “202020220” does not match mTP
sequences, meaning that mTP sequences are again rare
in aspartic acid or glutamic acid. For the other patterns
“2211221222”, “2212211222”, “22122212”, we can
see again the periodic occurrence of arginine (R) of an
amphiphilicα-helix. The pattern seems to be more stable
in the non-plant data set perhaps the data set is much
larger than for the plant set.

Overall, the rules discovered can be interpreted in terms
of biological knowledge known for the different signals.
The parameters chosen for the rules in each of the training
rounds seemed to be fairly stable, suggesting that the rules
are capturing relevant characteristics concerning the N-
terminal signals.

Future Work
For the plant data set, looking at the number of classified
sequences, the weakness of our predictor seems to lie
mainly in the discrimination of mTP and cTP. It would
be interesting to find another simple but different form of
rule to discriminate the two types of signals.

In the search we conducted, we defined the regions as
substring intervals, fixed for all the sequences. Although
the N-terminal signals are generally located in a somewhat
fixed area, this may not be true for nuclear sorting
signals, whose position in the sequence looks arbitrary.
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The substring interval may be “simple” for human to
understand, but may not be simple for the molecules
detecting the signal. It would be desirable to find a way to
target the actual location of the signal, and then consider
the rules mentioned in this paper. If we are successful,
there might also be ways to predict cleavage sites by
locating candidate areas, and finding some meaningful
amino acid index or alphabet index rule.

Conclusion
We extensively searched various attributes and their
simple combinations and were successful in finding a
simple and interpretable rule which could explain the data
set well. Despite their simplicities, the prediction accuracy
of the rules were still competitive with the prediction
scores of TargetP, the best predictor in the literature.

An experimental WWW service for predicting
N-terminal sorting signals using a decision list
trained on the entire data set is provided at: http:
//hypothesiscreator.net/iPSORT/. The range of parameters
searched to make the rules for the web service is different
from that in this paper in that the alphabet indexing was
searched in a wider range. Also, onlyavg was considered
for fw. Other parameters were adjusted to give best cross
validation scores.
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